

Kidney function in CKD

Elham Ramezanzade MD

CKD;a disadvantaged collective

- **1.Increasing prevalence**
- 2. High risk for outcomes (CHD, mortality,.)
- **3.Low quality of life**
- 4. High costs for treatment

What is CKD?

- Chronic kidney disease is defined based on the presence of either kidney damage or decreased kidney function for three or more months, irrespective of cause.
- Criteria:

Duration ≥3 months, based on documentation or inference

Glomerular filtration rate (GFR) <60 mL/min/1.73 m2

Kidney damage, as defined by structural abnormalities or functional abnormalities other than decreased GFR

KDIGO 2012 ; CKD EPI, if ..

FDA ;CG

MDRD;1999>2000, 4 (age, sex, eth,cr)

reasonably accurate CKD out • pts

tends to underestimate in NL kidney function

better in lower BMI & lower • GFR

Near nl kidney both the • original MDRD IN WESREN CKD PTS,AND THE MODIFIED MDRD IN CHINESE CKD PTS UNDERSTIMATE true GFR CKD EPI;2009,4,68-40, prevalence

in NL or near NL (>60) better than MDRD & CG tends to overestimate in CKD pts GFR is one dimension of assessment of kidney function $\,KDIGO$ CGA. In particular and in

accordance with contemporary international lab the term of microalbuniuria is discouraged and more quantitative description by category or by specific value is encouraged

Proteinuria in CKD

ı/urine ACR

2/urine pro/ crea

3/ reagent strip urinalysis for total protein with automated reading

4/reagent strip urinalysis for total protein with manual reading

Albuminuria categories in CKD

	AER	ACR (approximate equivalent)			
Category	(mg/24 h)	(mg/mmol)	(mg/g)	Terms	
A1	<30	<3	< 30	Normal to mildly increased	
A2	30-300	3-30	30-300	Moderately increased*	
A3	>300	>30	>300	Severely increased**	

			Description and range			
	Guide to frequency of monitoring (number of times per year) by GFR and albuminuria category			A1 Normal to	A2 Moderately	A3 Severely
				mildly increased	increased	increased
112	2			<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
(² r	G1	Normal or high	≥90	1 if CKD	<u>.</u>	2
r 1.73 n ge	G2	Mildly decreased	60-89	1 if CKD	1	2
Vmin pe and ran	G3a	Mildly to moderately decreased	45-59	1	2	3
ories (m	G3b	Moderately to severely decreased	30-44	2	3	3
t catego Desi	G4	Severely decreased	15-29	3	ä	4÷
GFR	G5	Kidney failure	<15	4+	4+	4+

GFR and albuminuria grid to reflect the risk of progression by intensity of coloring (green, yellow, orange, red, deep red). The numbers in the boxes are a guide to the frequency of monitoring (number of times per year).

what is Cystatin C really telling us?

KDIGO suggest using additional test such as sys c or clearance for confirmatory test such as e GFR based on serum cr is inaccurate

LMW pro 13kd,

all nucleated cell at a constant rate.

- Filtrate, metabolized after tubular reabsorb
- Age
- Muscular mass ,
- Dietary regimen
- Hypo & hyper thyroid
- Corticosteroid use
- Cigarette smoking
- Inflammatory marker such as CRP
- Malignant tumor

IN the last decade ,dozens of paper have compared the applicability of cys c with p cr in GFR estimation in different stage of CKD.

In CKD STAGE 3,4,5 the performance of cys c + pcr,only slightly superior to modified MDRD . MAY BE DUE TO NONRENAL CLEARANCE OF CYS C IS SUBSTANTIALLY HIGHER IN HUMAN WITH MOD/SEVERE REDUCED KIDNEY FAILURE,PLASMA CYS C MAY BE UNSUITABLE AS A GFR MARKER IN ADVACED KIDNEU FAILURE/

Urinary cys c	KDIGO 2012
Renal tubular damage all cause mortality cardiovascular disease, ESRD Biomarker of DKD Cys c in discrimiating Higher GFR is better than cr	 suggest Adult eGFR 45 -59 w/o kidney damage marker ,if is essential; check it. 60, confirm .if both less than CKD suggest equation of GFR for cys c instead of only serum level.

Creatinine, cystatin C

Diagnostic Performance for CKD progression

Progression of CKD

Traditional progression factors or markers:

- African-American ethnicity
- Proteinuria
- Hypertension
- High protein intake
- Obesity

- Anemia
- Dyslipidemia
- Smoking
- Nephrotoxins
- Cardiovascular disease

Emerging progression factors or markers with epidemiological evidence:

- ADMA
- FGF23
- Adrenomedullin
- ANP
- NT-proBNP
- Adiponectin
- Apolipoprotein A-IV

- Beta-Trace-Protein
- Phosphate
- PTH
- Vitamin D
- L-FABP
- KIM-1
- NGAL

Kronenberg: Nature Rev. Nephrol. 5:677-89, 2009

Anemia

Common Complication of CKD KDIGO 2012

Independent predictor of rapid decrease in GFR in stage 4 &

Independent predictor of progression to ESRD in stage 3,4 30 -59 (stage 3a-3b) at least annually check

<30 (stage 4,5) biannually

BS control

KDIGO ; A1C <7

1.Comorbidity,

2.at risk of hypoglycemia , and

3.Short life expectancy suggest higher target of A1C **KDIGO**; adult with eGFR <45; Ca, p ,ALP ,PtH at least annually

<u>BMD</u>; is not recommended routinely in pts with eGFR <45

<u>Vit D;</u> is not routinely administered ,an only after confimation diagnosis of Vit D defficiency

Serum albumin concentration

Predictive value ;independent of proteinuria •

Is not only a marker of proteinuria

Is a risk factor of CKD progression

Is a nutritional marker , and negative phase reactant , and decrease with proteinuria

New studies highlight potential role of renal tubule in genesis of AKI & CKD and progression to terminal stage /

Some CKD such as DKD rate decrease in renal function and overall renal long term outcome;

Table 3 Utility of new biomarkers in chronic kidney disease

Bioniarker	Origin	Outcome assessed	
Urinary liver-type fatty acid-binding protein	Proximal tubule	Diabetic Nephropathy: Microalbuminuria and mortality	
Urinary N-Acetyl-b-O-glucosaminidase	Proximal tubule	Diabetic Nephropathy: Albuminuria	
Urinary connective tissue growth factor	Proximal tubule	Diabetic Nephropathy: Glomerular filtration rate decline	
Interleukin-18	Tubulointerstitial	Diabetic Nephropathy: Albuminuria	
Apolipoprotein A-IV	Intestinal enterocytes	CKD: CKD Progression	
Urinary CD14 mononuclear cells	18 I	Polycystic kidney disease: Kidney volume	

Table 2 Novel biomarkers in chronic kidney disease

Biomarker source	Ref.	Population/type of study	Commentaries
u-LFABP	Nielsen et al ^[190]	227 newly diagnosed type 1 diabetic	Baseline u-LFABP levels predicted development of
Urinary		patients/longitudinal	microalbuminuria (HR = 2.3, 95%CI: 1.1-4.6), and predicted mortality (HR = 3.0, 95%CI: 1.3-7.0)
NAG	Kern et al ^[191]	87 type 1 diabetics with	Baseline NAG independently predicted microalbuminuria (OR
Urinary		microalbuminuria and 174 controls/	= 1.86, P < 0.001) and macroalbuminuria (OR = 2.26, P < 0.001)
		longitudinal	but risk was attenuated in multivariate models
CTGF	Nguyen et al ^[192]	318 type 1 diabetic patients and 29	U-CGTF was significantly higher in diabetic nephropathy
Urinary		control subjects/cross sectional	than micro o normoalbuminuria. U-CGTF correlated with albuminuria and GFR
IL-18	Miyauchi et al ^[193]	12 type 2 diabetes with overt	IL-18 expression in tubular cells was observed highly observed
Kidney tissue	20 m . - 12 martine - 12	nephropathy and 7 patients with MCD/ cross sectional	(83%) in patients with diabetes but only observed in 14.3% of MCD
ApoA-IV	Boes et al ^[194]	177 non-diabetic patients with mild to	Baseline ApoA-IV was a significant predictor of disease
Plasma		modetare renal CKD/longitudinal	progression (HR = 1.062 , 95% CI: 1.018 - 1.108) and patients with level above the median had significantly faster progression compared with patients with level below median ($P \le 0.0001$)
CD14 mononuclear cells	Zhou et al ^[195]	16 patients with autosomal dominat	Baseline urinary CD14 mononuclear cells correlated with 2 yr

Summary on CKD progression factors/markers

- They are independent from GFR and proteinuria.
- Many of them are independent from each other.
- Some of them might also reflect a cardiorenal syndrome.
- Large studies are urgently required.

NGAL iron-carrying protein of 25 kDa. tubular renal epithelial cells following tubulointerstitial injury; CKD progression .NGAL levels either in plasma or urine predict kidney disease progression independent of GFR. reverse, independent correlation urine & serum NGAL.REAL TIME INDICATORE OF active kidney damage in overall CKD state. interesting theory NGAL –GFR

KIM1; transmembrane protein , early biomarker for proximal tubular damage ,expressed in the urine during the first 12 h of the tubular injury .ADPKD, allograft &DM1 regression.MCP-1.CKD stages 1-3 , progressed to ESRD, promising

Urine retinol-binding protein 4; lipocalin ,liver, adipose tissue , adipokine , insulin resistance and obesity.pRBP4 is filtered ,and completely reabsorbed in the proximal tubule . variation levels of pRBP4 (secondary to nutrition, vitamin A levels, liver disease and infection) have small effect on uRBP 4 as a biomarker , false positives Fanconi , dent type 1 , lowe , drug toxicity in HIV, cadmium toxicity, plasma cell dyscrasias,

Beta trace protein & Beta 2 microglobulin ;

VS CYS C..... Increase in inflammation and malignancy

Fibroblast growth factor 23 ; It is important to mention that this association has been independent of phosphate levels and CKD stage.FGF23 level independently predict CKD progression.(such as LVH) serum p level is also independently predict CKD progression.

TGF B1 ;urinary level ---> CKD progression DKD , recipient ,GN.

CTGF ; independent predictor of ESRD, decrease in GFR

ADMA

- an **aminoacid of 202 Da**,
- it is normally synthesized intracellularly eliminated through the urine
- a comptetive inhibitor of the NOS isoenzyme,
- in particular e NOS & neuronal NOS . associated to CKD progression.
- In the diabetic and non diabetic population , ADMA levels are higher as GFR declines and are associated with rapid kidney function decline
- considered ADMA to be the "missing link" between cardiovascular disease and CKD
- ADMA is elevated ADMA reduced no production can start very early in the CKD before significant reduction in GFR..ADMA an endogenous methylated argenine analog ,results from protein turnover,

ADMA: Asymetric Dimethylarginine

- Potent and long-lasting endogenous inhibitor of NO synthase → less NO production
- NO is a potent vasodilatator and regulator of the vascular tone and blood flow
- Kidney is the main site of ADMA removal
- High ADMA levels related to atherosclerotic complications
- In CKD ADMA is markedly increased and NO is decreased
 - Decreased renal plasma flow
 - Increased renovascular resistance and blood pressure
 - Endothelial damage

ADMA and progression of CKD: MMKD-Study

Cox regression: HR 1.47 (95% CI 1.12-1.93) for 0.1 µM/L increase

Fliser et al.: J.Am.Soc.Nephrol. 16:2456-61, 2005

ADMA and progression of CKD and death

ADMA and progression of CKD

Hanai et al: NDT 24:1884-8, 2009;

Progression of diabetic nephropathy
 37 of 225 patients with T2DM

Lajer et al: Diabetes care 31:747-52, 2008:

397 patients with T1DM and nephropathy
 Yearly decline in GFR

Natriuretic peptides and CKD progression

Deiplinger et al ...KI 75;408-14 2009

Potent hypotensive, diuretic and natriuretic peptides involved in maintaining cardiovascular and renal homeostasis

- Produced in the kidney
- Increased concentrations associated with CVD and renal disease
- Renoprotective properties → compensatory increase in CKD

Variable (1 SD increment)	HR (95% CI)	p-value
NT-pro BNP (527 ng/L)	1.15 (0.96-1.38)	0.13
A-type natriuretic peptide (131 pmol/L)	2.11 (1.59-2.80)	<0.001
Adrenomedullin (0.42 nmol/L)	2.60 (1.85-3.64)	<0.001

Adjusted for age, sex, GFR, and proteinuria

Comparison of parameters kronrnburg nature rev

nephrol 2009

- Non coding RNA
- 22 nucleotide
- Serum and urinary level,
- Diagnosis , prognosis , response to treatment,
- miRNA 192 and 200 families> fibrotic damage in diabetic nephropathy manly by regulation of TGF B,
- miRNA 15, 17 and 31> cystogenesis in ADPKD

Figure 3 Role of DNA methylation in CKD. DNAme can regulate genes associated with CKD in various renal cells. In fibroblasts, the profibrotic TGF- β can promote fibrosis by inhibiting RASAL1 expression through promoter hypermethylation leading to activation of Ras signaling and fibrosis. In the normal kidney, KLF4 regulates

Hypermethylation of RASAL 1;A KEY FOR RENAL FIBROSIS •

Figure 4 Fibrotic and inflammatory gene regulation by histone modifications in CKD. In diabetic nephropathy and other CKDs, signal transduction events triggered by pathological factors such as high glucose (HG) and downstream effectors including TGF-β induce the expression and activation of key transcription factors such as

Thanks for your attention

Elham Ramezanzade ,MD Guilan University of Medical Science

MDRD ---- CKD EPI

170 × Cr ^{-0.999} × Age ^{-0.176} × 0.762 (<i>if female</i>) × 1.180 (<i>if black</i>) × SUN ^{-0.170} × Alb ^{0.318}	mL/min/1,73 m ²	Levey et al. ³³ (MDRD study)			
$175 \times \mathrm{Cr}^{-1.154} \times \mathrm{Age}^{-0.203} \times 0.742 \ (\textit{if female}) \times 1.212 \ (\textit{if black})$	mL/min/1.73 m ²	*			
141 × min(Cr/ κ , 1) α × max(Cr/ κ , 1) ^{-1.209} × 0.993 ^{Age} × 1.018 (<i>if female</i>) × 1.59 (<i>if black</i>), where κ is 0.7 for females and 0.9 for	mL/min/1.73 m ²	Levey et al. ³⁷ (CKD-EPI study)			
males, α is -0.329 for females and -0.411 for males, <i>min</i> indicates the minimum of Cr/ κ or 1, and <i>max</i> indicates the maximum of Cr/ κ or 1.					
This revised MDRD equation uses the creatinine value obtained using the isotope dilution mass spectrometry-traceable creatinine assay. ²³⁴ Alb, Serum albumin level (g/dL); Cr, serum creatinine level (mg/dL); CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; GFR, glomerular filtration rate; MDRD, Addification of Diet in Renal Disease; SUN, serum urea nitrogen level (mg/dL); Wt, body weight (kg).					